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STABILITY OF ROTATION OF A MOTOR DRIVEN
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The paper is concerned with the problem of stability of a shaft driven by an electric
motor. The behaviour of the system is explained by considering the motion on the energy
surface. It is found that for the shaft with one end free to move axially, the energy surface
has a minimum below the critical speed and a maximum above the critical speed. At
resonance the energy surface is a slope plane. As the consequence of the shape of the energy
surface, the motion above the critical speed is unstable and the speed of the shaft decreases
to the critical value. For the shaft with ends kept a fixed distance apart, the local maximum
on the energy surface is surrounded by an inclined concavity having a saddle and a global
minimum. The local maximum and the saddle represent the states of unstable dynamic
equilibrium. The global minimum represents the state in which the motion of the shaft
above the critical speed is stable. The behaviour of the system disturbed from the unstable
equilibrium states is demonstrated graphically.
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1. INTRODUCTION

The problem of vibration of a rotating shaft has been studied by many authors. Only the
papers that are directly related to the present study are cited here. The destabilizing effect
of the internal damping on the motion of the shaft above the critical speed has been studied
by Kimball [1], Ehrich [2] and Bucciarelli [3]. The problem of vibration of a beam with
axially restrained ends has been investigated by van Dooren [4]. The constant speed motion
of a shaft has been considered by Chang and Cheng [5] and Kurnik [6]. The motion of
a shaft with a constant acceleration has been studied by Genta and Delprete [7]. This paper
deals with the dynamics of the shaft for which the speed is a result of the interaction of
the motor and the shaft.

2. EQUATIONS OF MOTION

The system considered, represented schematically in Figure 1, consists of a shaft, a rigid
rotor of inertia B and a concentrated mass m. The rotor is driven by the motor torque
M. The transverse displacement of the rotor B is prevented by bearings. The transverse
displacement of the mass m results from the deflection of the shaft. The ends of the shaft
can be restrained to remain a fixed distance apart. In this case the transverse deflection
r(x) is followed by the elongation of the shaft. To simplify the analysis, the continuously
distributed mass of the shaft is not taken into account.

Taking the approximate deflection function in the form

r(x)= r sin (px/L) (1)
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the dependence of the stretching force N on the transverse deflection r can be found from

DL=g
L

0

1
20dr(x)

dx 1
2

dx=g
L

0

N dx
EsAs

, (2)

where L is the length of the shaft, DL is the elongation of the shaft, Es is the Young’s
modulus of elasticity and As is the area of the cross-section of the shaft. The dependence
between the transverse concentrated force F applied at x= xF and the shaft deflection r
can be found from the equation

g
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r(x)0 d2
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d
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dx 1−Fd(x− xF )1 dx=0, (3)

where Is is the moment of inertia of the cross-section of the shaft, d(x) is a Dirac’s delta
function. For the force F applied at the centre of the shaft xF =L/2, one obtains

F=(p4/2)(EsIs /L3)r+(p4/8)(EsAs /L3)r3 = kr(1+ k1r2). (4)

For circular cross-section of a diameter d, the stiffness constants in equation (4) are found
to be

k=(p5/128)(Esd4/L3), k1 =4/d2. (5)

The motion of the considered system is governed by a set of non-linear ordinary
differential equations

B d2a/dt2 + c(dv/dt)(w0 +w)− c(dw/dt)(v0 + v)+ kv(1+ k1(v2 +w2))(w0 +w)

− kw(1+ k1(v2 +w2))(v0 + v)−M=0,
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Figure 1. The shaft with ends restrained.
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Figure 2. Equilibrium states of the shaft with ends kept a fixed distance apart for the stiffness k1d2 =4 and
the eccentricity v0/d=0·25. (a) The dependence of the deflection on the angular speed of the shaft; (b) the
dependence of the positive real parts of the eigenvalues of the stability matrix on the damping coefficient for
V/V 0 = 3. ——, For stable v (attractor); — —, for unstable v (repellor) and corresponding h; – · – · – , for
unstable v (saddle) and corresponding h.

Here, v and w are the components of the displacement r of the mass m in the co-ordinate
system fixed to the rotor B; co-ordinates w0 and v0 define the static eccentricity of the mass
m; a is the rotation angle of the rotor; c is the coefficient of the internal damping.

The driving torque M can be found from the equation

Tm dM/dt=Cm (Vm −da/dt)−M (7)

where Tm is a time constant of the motor, Cm is slope of the static characteristic of the motor
and Vm is a speed of the motor for which the static moment is equal to zero.

3. THE STATE OF DYNAMIC EQUILIBRIUM

The dynamic equilibrium state solution can be found by substituting the driving moment
and the velocities

M=0, V=da/dt=Vm , dv/dt=0, dw/dt=0, (8)

into the set of equations (6, 7). The resulting equations

−V2m(v0 + v)+ k(1+ k1(v2 +w2))v=0, −V2m(w0 +w)+ k(1+ k1(v2 +w2))w=0,

(9)

determine the deflection of the motor driven shaft. The equations (9) are the same as for
the shaft rotating with a constant speed [5]. The equilibrium state solutions found from
equations (9) are shown in Figure 2a in the parameter space of V/V0 for V0 = (k/m)1/2,
w0 =0, v0/d=0·25 and k1d2 =4.

It is convenient to rewrite the set of equations (6, 7) in the general form

F(X)=0, X=$dM
dt

, M,
d2a

dt2 ,
da

dt
, a,

d2v
dt2 ,

dv
dt

, v,
d2w
dt2 ,

dw
dt

, w%. (10)
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Designating by dj the disturbance from the equilibrium state j, taking the disturbed
solution in the form

X(t)= j(t)+ dj(t). (11)

and applying Taylor’s expansion to equation (10), the stability equation can be written as
follows

Fn (X)=Fn (j)+
1Fn (j)

1j1
dj1 +

1Fn (j)
1j2

dj2 +
1Fn (j)

1j3
dj3 + · · · . (12)

Here, F(X)=0 and F(j)=0.
Applying formula (12) to the set of equations (6,7), one obtains

ddM/dt=−(1/Tm )(Cm dda/dt+ dM),
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The set of equations (13) can be rewritten as a set of first order differential equations

(d/dt)dU=D(U)dU (14)

where U=[M, a, v, w, da/dt, dv/dt, dw/dt]T and dU=[dM, da, dv, dw, dda/dt, ddv/dt,
ddw/dt]T. The eigenvalues of the stability matrix D were calculated for the equilibrium
solutions defined by equations (9) (shown in Figure 2a) for w0 =0, v0/d=0·25, k1d2 =4,
B/(md2)=20, Cm /(md2V0)=10, V0 = (k/m)1/2, TmV0 =1, V/V0 =3. The positive real parts
of the eigenvalues h/V0 versus the damping coefficient c/(mk)1/2 are plotted in Figure 2b.
The real part of the eigenvalue corresponding to the stable equilibrium state represented
by the solid line in Figure 2a is negative and it is not shown in Figure 2b.
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To illustrate the stability of the system the energy E associated with the dynamic
equilibrium state is defined as a potential

1E/1v=Fv , 1E/1w=Fw ,

Fv = k(1+ k1(v2 +w2))v−V2m(v0 + v),

Fw = k(1+ k1(v2 +w2))w−V2m(w0 +w). (15)

The forces Fv and Fw (9, 15) represent the elastic reaction of the shaft decreased by the
centrifugal force. The energy is found to be of the form

E= k([v2 +w2]/2+ (k1/4)(v2 +w2)2)− (mV3/2)((v0 + v)2 + (w0 +w)2). (16)

The cross-sections of the energy surface E/k versus v/d and E/k versus w/d for the shaft
having one end free to move axially (k1 =0) with the static eccentricity v0/d=0·25 are
shown in Figure 3a for V/V0 =0·2, Figure 3b for V/V0 =1 and Figure 3c for V/V0 =3.
It can be seen that the shape of the energy surface changes with the increase of the angular
speed. For the speed lower than the critical one the energy surface has a minimum. It
becomes a slope plane at the resonance. Over the critical speed the energy surface has a
maximum.

Figure 3. The cross-sections of the energy surface E/k versus v/d and E/k versus w/d for the shaft having one
end free to move axially (k1 =0, v0/d=0·25); (a) below the critical speed V/V0 =0·2; (b) at the critical speed
V/V0 =1; (c) above the critical speed V/V0 =3.
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Figure 4. The cross-sections of the energy surface E/k versus v/d and E/k versus w/d for the shaft with ends
kept fixed distance apart (k1d2 =4, v0/d=0·25): (a) below the critical speed V/V0 =0·2; (b) above the critical
speed for V/V0 =3; (c) V/V0 =4.

The cross-sections of the energy surface E/k versus v/d and E/k versus w/d for the shaft
with ends kept fixed distance apart (k1d2 =4) with the static eccentricity v0/d=0·25 are
shown in Figure 4a for V/V0 =0·5, Figure 4b for V/V0 =3 and Figure 4c for V/V0 =4.
It can be seen that for the speed higher than the critical one the energy surface has a local
maximum surrounded by an inclined concavity. The concavity has a saddle point and a
global minimum. The maximum corresponds to the unstable equilibrium state represented
by the dashed line in Figure 2a. The saddle point corresponds to the unstable equilibrium
state represented by the dashdot line in Figure 2a. The global minimum corresponds to
the stable dynamic equilibrium state represented by the solid line in Figure 2a.

In order to observe the behaviour of the system disturbed from the state of dynamic
equilibrium the set of equation (6, 7) was numerically integrated for the initial conditions
corresponding to the solution (9) with the initial disturbance dv=0·01v taking Vm /V0 =3,
w0 =0, v0/d=0·25, B/(md2)=20, c/(mk)1/2 =0·1, Cm /(md2V0)=10, V0 = (k/m)1/2 and
TmV0 =1.

The behaviour of the shaft having one end free to move axially (k1 =0), disturbed from
the energy maximum, is shown in Figure 5. It can be seen that the system leaves the
state of equilibrium. The trajectory v versus w is an outward spiral. The angular speed of
the shaft decreases to the critical value. The decrease of the shaft speed results in the
decrease of the curvature of the energy surface. It changes from the convexity shown
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Figure 5. The angular velocity and the transverse deflection of the shaft having one end free to move axially
(k1 =0) and disturbed from the unstable equilibrium state for v0/d=0·25 and Vm /V0 =3.

in Figure 3c to the slope plane shown in Figure 3b. The motion is then continued on
that plane.

The behaviour of the shaft with ends kept fixed distance apart (k1d2 =4) disturbed from
the local energy maximum is shown in Figure 6. It can be seen that the system leaves the
state of equilibrium. The motion of the system starts with an outward spiral at the energy
maximum and it ends with an inward spiral at the energy minimum. There are some
instantaneous speed variations during the transition period and they have some influence
on the shape of energy surface. At the energy minimum the shaft speed over the critical
value, is maintained.

The calculations performed for both the linear and non-linear systems have shown that
the increase in the stiffness of the motor characteristics Cm or the inertia B of the rotor
did not prevent the instability at the energy maximum. On the other hand, in the absence
of internal damping the system stayed at the maximum. This is because in this case the
real part of the corresponding eigenvalue of the stability matrix is equal to zero (dashed
line in Figure 2b).

Figure 6. The angular velocity and the transverse deflection of the shaft with ends kept fixed distance apart
and disturbed from the unstable equilibrium state represented by local energy maximum for k1d2 =4, v0/d=0·25
and Vm /V0 =3.
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Figure 7. The angular velocity and the transverse deflection of the shaft with ends kept fixed distance apart
and disturbed from the unstable equilibrium state represented by the saddle on the energy surface for k1d2 =4,
v0/d=0·25 and Vm/V0 =3.

The behaviour of the shaft with ends kept fixed distance apart (k1d2 =4) disturbed from
the saddle point on the energy surface is shown in Figure 7. The system leaves the
state of equilibrium. The trajectory v versus w goes around on the energy surface and as it
approaches the energy minimum, it becomes an inward spiral. The speed variations
during the transition period have some influence on the shape of the energy surface. At
the energy minimum the shaft speed over critical value is maintained. The described
behaviour was also observed when the internal damping was absent. This is because the
real part of the corresponding eigenvalue of the stability matrix is not equal to zero
(dashdot line in Figure 2b).

4. CONCLUDING REMARKS

If the shaft has one end free to move axially then the energy surface has a minimum
below the critical speed and a maximum above the critical speed. It is a slope plane at the
resonance. If internal damping is present then the motion above the critical speed leads
to the decrease of the shaft speed to the critical value.

If the shaft has its ends kept a fixed distance apart then, above the critical speed, the
maximum on the energy surface is surrounded by a inclined concavity having a saddle and
a global minimum. The global minimum represents the state of stable rotation of the shaft
with the speed higher then the critical one. The saddle represents the state of unstable
rotation of the shaft. The maximum represents the unstable rotation of the shaft if the
internal damping is present. The system disturbed from those two unstable states goes to
the energy minimum. If the internal damping is absent then at the energy maximum the
real part of the eigenvalue of the stability matrix is equal to zero. In this case the system
can operate at the energy maximum.
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APPENDIX: MAIN SYMBOLS

As area of the cross-section of the shaft
B mass moment of inertia of the rotor
c internal damping constant
Cm slope of the static characteristic of the motor
d diameter of the cross-section of the shaft
D stability matrix
E energy defined as a potential
Es Young’s modulus of elasticity
F transverse concentrated force
Fv , Fw components of the elastic reaction of the shaft decreased by the centrifugal force
h real part of the eigenvalue of the stability matrix D; Lyapunov exponent
Is moment of inertia of the cross-section of the shaft.
k, k1 stiffness constants of the shaft
L length of the shaft,
m concentrated mass
M motor torque
N normal stretching force resulting from the elongation DL of the shaft
r transverse displacement of the mass m in the rotating reference frame
Tm time constant of a motor
U column matrix [M, a, v, w, da/dt, dv/dt, dw/dt]T

v, w components of the displacement r of the mass m in the co-ordinate system fixed to the rotor
B

v0, w0 static eccentricity of the mass m
X vector {dM/dt, M, d2a/dt2, da/dt, a, d2v/dt2, dv/dt, v, d2w/dt2, dw/dt, w}
xF co-ordinate of concentrated mass m and force F
a rotation angle of the shaft
DL elongation of the shaft resulting from its transverse deflection r(x)
d(x) Dirac’s delta function
dj disturbance of j
dv disturbance of v
dU disturbance of U
j dynamic equilibrium state of X
Vm speed of the motor for which the motor torque M is equal to zero for Tm =0
V angular velocity of the shaft
V0 natural frequency of the flexural vibration of the shaft V0 = (k/m)1/2


